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Universality in three-frequency resonances
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We investigate the hierarchical structure of three-frequency resonances in nonlinear dynamical systems with
three interacting frequencies. We hypothesize an ordering of these resonances based on a generalization of the
Farey tree organization from two frequencies to three. In experiments and numerical simulations we demon-
strate that our hypothesis describes the hierarchies of three-frequency resonances in representative dynamical
systems. We conjecture that this organization may be universal across a large class of three-frequency systems.
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Nonlinear systems with two competing frequencies sh
resonances or lockings, in which the system locks into
resonant periodic response which has a rational freque
ratio @1#. The locking increases with nonlinearity, from non
in the linear regime, to a critical situation where the syst
is everywhere resonant. The subcritical system has qu
periodic responses between different lockings, while at
percritical values of the nonlinearity, chaotic as well as p
riodic and quasiperiodic responses may occur. Resona
have been investigated theoretically and experimentally
many nonlinear systems, and their distribution in parame
space in the form of a devil’s staircase is now well und
stood, from the number theoretical concept of Farey tr
@2–7#. However, all this applies to resonances generated
the interaction of two frequencies. Far less is known,
comparison, when there are three or more interacting
quencies.

Adding another frequency allows new phenomena to t
place. Now as well as~two-frequency! resonance as before
there is a further possibility: three-frequency resonance,
known as weak resonance or partial mode locking. Thr
frequency resonances are given by the nontrivial solution
the equationa f01b f11c f250, wherea, b, andc are inte-
gers, f 1 and f 2 are the forcing frequencies, andf 0 is the
resonant response. They form a web in the parameter s
of the frequencies@8–11#. In this paper, we hypothesize
local ordering of three-frequency resonances based on
eralizing the Farey tree of two-frequency systems to th
frequencies. We perform experiments and numerical sim
tions to show that our hypothesis is justified in representa
dynamical systems with three interacting frequencies: a q
siperiodically forced circle map, a pair of parametrica
coupled forced nonlinear oscillators, and an experime
system consisting of an electronic circuit of forced pha
locked loops. Our observations lead us to conjecture that
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ordering we predict may be universal in a large class
dynamical systems with three interacting frequencies.

Firstly, we revise continued fractions and the Farey t
for the case of two frequencies. Consider a two-freque
system with autonomous frequencyf 0 and external fre-
quencyf 1 . Let f̃ 5 f 1 / f 0 . The aim is to define a sequence
rationals that converges tof̃ . Strong convergence@12# is
defined for rational fractionspi /qi ,(pi ,qi)PZ as

I f̃ 2
pi

qi
I5uqi f̃ 2pi u. ~1!

pn /qn is a best rational approximation if

I f̃ 2
pn

qn
I, I f̃ 2

pi

qi
I ~2!

for all (pi ,qi) for any qi<qn . Given f̃ , pn andqn are ob-
tained by expanding f̃ in continued fractions f̃
5(a1 ,a2 ,a3 , . . . ), andtruncating the expansion aspn /qn
5(a1 ,a2 ,a3 , . . .an) @13#. The pn /qn are then the strong
convergents off̃ . They give the sequence of fractions wi
lowest monotonically increasing denominators that co
verges tof̃ .

The physically motivated hypothesis invoked to expla
the local ordering of the hierarchy of~two-frequency! reso-
nances is that the larger the denominator, the smaller
plateau. The fraction with smallest denominator betweenp/q
andr /s, if they are sufficiently close thatuqr2psu51, when
they are called adjacents, is (p1r )/(q1s). This fraction,
known as the mediant, is then the most important resona
in the interval. Repeatedly performing the mediant operat

p

q
%

r

s
5

p1r

q1s
~3!

on a pair of adjacent rational numbers, we obtain a Fa
tree. The Farey tree provides a qualitative local ordering
two-frequency resonances, and gives rise to a structur
plateaus at all rationals known as the devil’s staircase.
2902 ©1999 The American Physical Society
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PRE 59 2903UNIVERSALITY IN THREE-FREQUENCY RESONANCES
devil’s staircase in turn is the skeleton for the layout of t
resonances in parameter space as Arnold tongues@2–7#.

Now consider the case of three frequencies, one inte
f 0 , and two externalf 1 and f 2 . We may divide through by
the autonomous frequencyf 0 , to give f 1

†5 f 1 / f 0 , and f 2
†

5 f 2 / f 0 . We aim to come up with two convergent sequenc
of rational numbers with the same denominator,pn /kn and
qn /kn , which are strong convergents tof 1

† and f 2
† , respec-

tively. As before, strong convergence is defined as

I ~ f 1
† , f 2

†!2S pi

ki
,
qi

ki
D I5uki~ f 1

† , f 2
†!2~pi ,qi !u. ~4!

Thus (pn /kn ,qn /kn) are best rational approximants if

I ~ f 1
† , f 2

†!2S pn

kn
,
qn

kn
D I, I ~ f 1

† , f 2
†!2S pi

ki
,
qi

ki
D I ~5!

for all triplets of integers (pi ,qi ,ki) for any ki<kn . So we
may write

«15 I pn

kn
2 f 1

†I5uknf 1
†2pnu, ~6!

«25 Iqn

kn
2 f 2

†I5uknf 2
†2qnu, ~7!

where we wish to obtain the integerspn , qn , andkn . This
general problem has not been solved@14,15#; however, we
may set «15«2 , so that both approximations should b
equally good or bad. If we do this, we can equateuknf 1

†

2pnu5uknf 2
†2qnu, and ask what iskn . There are two solu-

tions kn5(qn6pn)/( f 2
†6 f 1

†). At this point we must remem
ber thatkn is an integer, so these solutions require that
frequencies be rescaled byf 2

†6 f 1
† . For which we define for

the first solution f̃ 15 f 1
†/( f 1

†1 f 2
†), f̃ 25 f 2

†/( f 1
†1 f 2

†), and

FIG. 1. ~a! Schematic diagram of the frequency line, showi

the relative position off̃ s and f̃ s* and their respectivepn ,qn har-
monics that approximatef 1 and f 2 at equal distance.~b! General-

ized Farey tree starting from the adjacentsf 1 /pn and f̃ s* . The first

mediant is f 2 /qn ; at the second level we obtainf̃ s and (2f 2

2 f 1)/(2qn2pn), and so on.
al

s

e

similarly for the other solution f̃ 1* 5 f 1
†/( f 2

†2 f 1
†), f̃ 2*

5( f 2
†)/( f 1

†2 f 2
†). The two solutions give rise to different« ’s,

«5u~pn1qn! f̃ 12pnu5u~pn1qn! f̃ 22qnu, ~8!

«* 5u~qn2pn! f̃ 1* 2pnu5u~qn2pn! f̃ 2* 2qnu, ~9!

from which one can obtain«/«* 5u( f 22 f 1)/( f 11 f 2)u,1.
So in this sense the (f̃ 1 , f̃ 2) solution is better than the
( f̃ 1* , f̃ 2* ) solution.

FIG. 2. ~a! The electronic circuit in block-diagram form. Two
coupled voltage-controlled oscillators~VCO’s! are forced with two
independent external forces.~b! Three-frequency devil’s staircas
for the circuit. The straight lines correspond to intervals of the
offset within which the fundamental frequency of the output
mains constant. We varied the dc offset of input 1 in steps of 1
in the interval 0.90 V to 1.05 V, which corresponds to frequen
responses of the circuit between 514.28 Hz and 525.00 Hz. O
intervals with a stability width greater than 2 mV are plotted. T
external frequencies are fixed at 2100 Hz and 3600 Hz.~c! The
generalized Farey tree predicts the organization of all the freque
values observed in~b!.
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2904 PRE 59CARTWRIGHT, GONZÁLEZ, AND PIRO
Now sticking with the (f̃ 1 , f̃ 2) solution, pn , (pn1qn),
andqn are obtained from the continued fraction expansio
of f̃ 1 and f̃ 2 . Since

f̃ 15
f 1

†

f 1
†1 f 2

†
5

f 1

f 11 f 2
5

1

11
1

f 1

f 2

, ~10!

f̃ 25
f 2

†

f 1
†1 f 2

†
5

f 2

f 11 f 2
5

1

11
f 1

f 2

, ~11!

if we have the continued fraction expansion off 1 / f 2

5(a1 ,a2 ,a3 , . . . ), that of f̃ 15(a111,a2 ,a3 , . . . ), andf̃ 2
5(1,a1 ,a2 ,a3 , . . . ). Hence ifpn /qn is thenth strong con-
vergent of f 1 / f 2 , or equivalently of f̃ 1 / f̃ 2 , given by this
continued fraction expansion,pn /(pn1qn) and qn /(pn

1qn) are the strong convergents off̃ 1 and f̃ 2 , respectively.
If pn /qn is such a convergent off 1 / f 2 , we may define as
generalized adjacents any pair of (f i /r i , f j /r j ), with f PR
and r PZ, that satisfy

u f i r j2 f j r i u5u f 1qn2 f 2pnu. ~12!

From this definition, the subharmonicsf 1 /pn and f 2 /qn are
generalized adjacents, and the mediant between them is

f̃ s5
f 11 f 2

pn1qn
, ~13!

which by extension from the two-frequency case we hypo
esize to be the largest plateau betweenf 1 /pn and f 2 /qn .
Starting with (f̃ 1* , f̃ 2* ) instead of (f̃ 1 , f̃ 2), we obtain the gen-

eralized mediantf̃ s* 5( f 22 f 1)/(qn2pn); both f̃ s and f̃ s* are
shown in Fig. 1~a!. The generalized mediant operation

f 1

r i
%

f 2

r j
5

f 11 f 2

r i1r j
~14!

FIG. 3. The three-frequency devil’s staircase for the system
ordinary differential equations of Eq.~15!. The system parameter
are equivalent to those of Fig. 2~b!.
s

-

then provides us with a generalized Farey tree for three
quencies; in Fig. 1~b! we show the first three levels of th
tree obtained by recursive application of Eq.~14! to the ad-
jacentsf 1 /pn and f̃ s* .

Let us take as an example a three-frequency system
the two external frequencies set tof 152100 Hz and f 2
53600 Hz. The frequency ratiof 1 / f 2 is then 7/12. The
continued fraction expansion forf 1 / f 2 is ~1,1,2,1,1!, and the
different truncations of this produce the convergents of 7/
which are 1/1, 1/2, 3/5, and 4/7. So we take 4/7 as an
proximation to the higher-order rational 7/12, or equivalen
in terms of the original frequencies,f 1 / f 252000
Hz/3500 Hz approximatesf 1 / f 252100 Hz/3600 Hz with
a detuning of 100 Hz. Between the adjacentsf 1/4
5525 Hz and f 2/75514.3 Hz lies the mediantf̃ s5( f 1

f

FIG. 4. Quasiperiodically forced circle map:~a! Three-
frequency devil’s staircase for forcing frequenciesf 151,f 2512/7.
~b! Devil’s ramps: the rotation number as a function of the exter
frequency ratio and the intrinsic frequency shows the global or
nization of three-frequency resonances.
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PRE 59 2905UNIVERSALITY IN THREE-FREQUENCY RESONANCES
1f2)/115518.2 Hz, which we have hypothesized to be t
widest resonance in this interval, and recursively apply
the mediant operation gives us the Farey tree that pred
the entire hierachy of resonances in the interval. We n
proceed to test this hypothesis in three-frequency dynam
systems.

We have constructed the three-frequency electronic os
lator shown in Fig. 2~a! @16#. Two phase-locked loop~PLL!
circuits made up of voltage-controlled oscillators~VCO’s!
are coupled through a lowpass and integrator network
forced with two independent periodic forces. Typically, t
outputs of the two oscillators are synchronized 1/1. We fi
the outputs of the two oscillators in order to attenuate
components at the external frequencies and we measur
output frequencies of both oscillators. If the two values c
incide we plot them against the dc offset of oscillator
which is used as the control parameter~for the circuit a
variation in the mean value of thei th external force is
equivalent to a linear change in the natural frequency of
i th oscillator!. The results are presented in Fig. 2~b! for the
interval (f 2/7,f 1/4) for f 1 and f 2 fixed at 2100 Hz and 3600
Hz, respectively. This appears to be a typical devil’s sta
case familiar from periodically driven oscillators. It is, how
ever, a three-frequency devil’s staircase: the plateaus co
spond to solutions with three linearly dependent ba
frequencies~the frequency plotted plus the two forcing fre
quencies! instead of to periodic solutions. As predicted, t
generalized mediantf̃ s5518.2 Hz is the largest resonance
the interval; moreover, the generalized Farey tree show
Fig. 2~c! gives the entire hierarchy of resonances of F
2~b!.

We have integrated an exactly soluble system of ordin
differential equations with three interacting frequencies@2,4#

ẍi1~4bxi
222a!xi̇1b2xi

522abxi
31„v0i~ t !21a2

…xi5 f i~ t !
~15!

for i 51,2. The external forces and the coupling term
chosen in such a way as to preserve the piecewise inte
bility of the overall system. The oscillators are coupled pa
metrically, their intrinsic frequency changing every time t
coordinate of one of them changes signv0i(t)5ṽ0i
1sgnui(t) sgnuj (t)D i . The i th oscillator is driven by an
impulsive external forcef i(t)5VEi(nd(t2ntEi) of fre-
quencyv i whose effect is to produce a discontinuityVEi in
. 2
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the oscillator velocity at timesntEi5n/(2pv i). We have
performed a power spectrum analysis of the output of b
oscillators while varying the intrinsic frequency of oscillat
1. We display in Fig. 3 the most prominent peak in ea
spectrum againstṽ01 for a parameter region equivalent t
that of Fig. 2~b!, and in which the two oscillators are als
synchronized 1/1. All detectable resonances are again
described by the Farey tree structure of Fig. 2~c!.

Our final example of a three-frequency system is the q
siperiodically forced circle map,

f85f1Vn1
k

2p
sin 2pf mod 1. ~16!

The quasiperiodic sequenceVn is the time interval between
successive pulses of a sequence composed of the supe
tion of two periodic subsequences, one of period equal to
and the other of periodT1 /T2,1 ~with no loss of general-
ity!, multiplied by the value of the intrinsic frequency of th
oscillator. In Fig. 4~a! we demonstrate that, for the sam
input frequencies as in the previous two cases, the outpu
the form of a devil’s staircase is qualitatively unchange
once again its organization is given by the generalized Fa
tree. Moreover, Fig. 4~b! shows how three-frequency reso
nances are arranged globally in the form of devil’s ramps
the parameter space.

By generalizing the known Farey tree structure of tw
frequency resonances for three frequencies we have
dicted the organization of three-frequency resonances in
namical systems with three interacting frequencies. O
results for three different three-frequency dynamical syste
for the same ratio of forcing frequenciesf 1 / f 2 show that in
each example the predicted generalized Farey tree hiera
is observed. We have repeated these experiments and s
lations for different frequency ratios, both rational, as t
example presented here, and irrational, for example,f 1 / f 2

5(11A5)/2, the golden ratio. In every case we have exa
ined, the local ordering of resonances around the converg
in the devil’s staircase—slices through the devil’s ramps
Fig. 4~b!—is well described by the generalized Farey tr
hierarchy. We conclude that the organization we have
scribed here is widespread, and conjecture that it may
universal in a large class of three-frequency systems.
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